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N O M E N C L A T U R E  

A, area perpendicular to the direction of current flow; 
C, constant of integration; 
E, electric potential ; 
i, electric current ; 
k, thermal conductivity; 
M, quantity defined by equation (7); 
N, quantity defined by equation (17); 
q, generated heat ; 
R, electrical resistance; 
r, radial coordinate;  
T, temperature ; 
t, thickness of the disc; 
p, electrical resistivity; 
tr, Thomson coefficient. 

Subscripts 
0, refers to the outside periphery of the disc; 
i, refers to the inside periphery of the disc. 

IN THE literature, the temperature distribution in cylindrical 
conductors with electric current flowing in the axial direction 
has been obtained for various boundary conditions. The 
results are summarized in the book by Carslaw and Jaeger 
[1]. In the present study, the steady state temperature 
distribution in a disc with current flowing in the radial 
direction is derived for two different boundary conditions; 
namely, with and without heat transfer at the inner periphery 
of the disc. The Thomson effect is also considered. 

Considering the element of volume of the disc shown in 
Fig. 1, the energy balance in cylindrical coordinates, for the 
steady state case with constant properties and heat transfer 
in the radial direction only, can be written as 

d2T k dT  
k~-ar. + r ~ r  + q  = O. (1) 

* Present address: National  Bureau of Standards, 
Washington, D.C. 
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A general solution to equation (1) will be obtained first 
neglecting the Thomson heat and second considering the 
Thomson heat. In both cases, two different boundary condi- 
tions (zero and finite heat transfer at the inner periphery of 
the disc) will be used to obtain specific solutions to equation 
(1). 

NEGLECTING THE T H O M S O N  HEAT 

Neglecting the Thomson heat, the generated heat will 
be due to the Joule effect only, thus 

dR 
q = ~ r  (2) 

and according to the Ohm's  Law 

i = dr - dR 

or 

dR = ( P )  dr. (4) 

Substituting equation (4) in equation (2) and replacing A 
by 2nrt, one obtains 

q = p(i/2~trt) 2. (5) 

Substitution of equation (5) in equation (1) and rearrange- 
ment yields 

r2 d2T dT  
+ r d-r- + M = 0  (6) 

where 

M - (p/k)(i/27tt) 2. (7) 

It must be noted that the properties p and k are considered 
to be independent of temperature and location. 
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FIG. 1. Element of volume of the disc for heat-transfer analysis. 

The general solution of equation (6) is 

T = -(M/2)( ln  r) 2 q-- C 1 In r + C 2. (8) 

The specific solutions of equation (8) are obtained for two 
different boundary conditions. 

Case 1 
For the boundary conditions 

T = T~ a t  r = r i ] 

T = To at r = ro ~ (9) 

equation (8) yields 

(r°']~(M/2l ln (r/rl)ln (r--o~ii + (Ti - T°t] 
T - To = l n \ r } k  . tlm 

Case 2 
For the boundary conditions 

dT 
- -  = 0 a t  r = r i -~ 
dr 

T =  T O at r = r o (11) 

equation (8) yields 

T - T 0 = M In (ro/r) In [x/(ror)/r,]. (12) 

The reduced temperature distribution in a disc as a func- 
tion of reduced radial distance for various M values is 
presented in Fig. 2 for the case rl/ro = 0.2. The case with no 
heat transfer at ri corresponds to M = 1.55. 

The electric potential across the disc (between r~ and %) is 

Eio = ~' i dR. (13) 
r ,  
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FIG. 2. Temperature distribution in the disc under different heat-transfer conditions. 
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Substituting equation (4) in equation (13), replacing A by 
2nr t  and performing the integration, one obtains 

Eio = (p i /2n t )  In (ro/rl). (14) 

CONSIDERING THE T H O M S O N  HEAT 

Simultaneous flow of heat and electricity in the same 
direction gives rise to the Thomson effect or the Thomson 
heat. In the case of a disc~ the total generated heat can be 
expressed as 

q = p(i/2rcrt) 2 - a ( i / 2 r t r t ) (dT /dr ) .  (15) 

Where the first and second terms on the right-hand side 
correspond to the Joule and the Thomson effects, respecti- 
vely. Substituting equation (15) in equation (1) and re- 
arranging, one obtains 

r2 d2T dT 
+ (1 - N )  r ~  + M = 0 (16) 

O r  

where 

M =- (p /k ) ( i /2n t )  2 (7) 

and 

N = (tr/k)(i /2nt) .  (17) 

The general solution of equation (16) is 

T = ( M / N ) I n  r + C3r N + C a . (18) 

The specific solutions of equation (18) are obtained for 
the two different boundary conditions given by equations 
(9) and (11). 

C a s e  1 

T - T o = [Ti -- To + ( M / N ) I n  (ro/ri) ] 

x [(r N - ~ ) / ( ~  - r~o)] - ( M ~ N ) I n  (ro/rl. (19) 
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Case  2 

T - T o = ( M / N 2 ) [ ( r o / r t  ~ - 1] - ( M / N )  In (ro/r). (20) 

The effect of the Thomson heat on the temperature distri- 
bution in a disc is negligible for metals and most metallic 
alloys. However, in semiconductors and certain alloys with 

high Thomson coefficients the contribution of the Thomson 
heat may be appreciable. 
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